Tissue Distributions of Dhurrin and of Enzymes Involved in Its Metabolism in Leaves of Sorghum bicolor.
نویسندگان
چکیده
The tissue distributions of dhurrin [p-hydroxy-(S)-mandelonitrile-beta-d-glucoside] and of enzymes involved in its metabolism have been investigated in leaf blades of light-grown Sorghum bicolor seedlings. Enzymic digestion of these leaves using cellulase has enabled preparations of epidermal and mesophyll protoplasts and bundle sheath strands to be isolated with only minor cross-contamination. Dhurrin was located entirely in the epidermal layers of the leaf blade, whereas the two enzymes responsible for its catabolism, namely dhurrin beta-glucosidase and hydroxynitrile lyase, resided almost exclusively in the mesophyll tissue. The final enzyme of dhurrin biosynthesis, uridine diphosphate glucose:p-hydroxymandelonitrile glucosyltransferase, was found in both mesophyll (32% of the total activity of the leaf blade) and epidermal (68%) tissues. The bundle sheath strands did not contain significant amounts of dhurrin or of these enzymes. It was concluded that the separation of dhurrin and its catabolic enzymes in different tissues prevents its large scale hydrolysis under normal physiological conditions. The well documented production of HCN (cyanogenesis), which occurs rapidly on crushing Sorghum leaves, would be expected to proceed when the contents of the ruptured epidermal and mesophyll cells are allowed to mix.
منابع مشابه
Effect of Freezing on the Hydrocyanic Acid Potential of Field-Grown Sorghum Tillers
Tissue disruption caused by freezing and thawing may contribute to rapid enzymatic breakdown of dhurrin [p-hydroxy-(S)mandelonitrile-p-D-glucoside], the cyanogenic glucoside of sorghum [Sorghum bicolor (L.) Moench], but published reports arenot in agreement as to the effects of freezing on the hydrocyanic acid potential (HCN-p) of field-grown sorghum leaves. Theseeffects were investigated in a ...
متن کاملInfluence of Sample Treatment on Apparent Hydrocyanic Acid Potential of Sorghum Leaf Tissue
When dhurrin [p-hydroxy-(S)-mandelonitrile-tJ-D-glucoside], the cyanogenic glucoside of sorghum [Sorghum bicolor (L.) Moench], is hydrolyzed by autoclaving, p-hydroxybenzaldehyde (P-HB) is released. The spectrophotometric determination of pHB concentration in autoclaved sorghum leaf extracts provides a measure of the hydrocyanic acid potential (HCN-p) of leaf tissue. Extracts of field-grown sor...
متن کاملTransfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.
Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicoti...
متن کاملInheritance of Dhurrin Content in Mature Sorghum Leaves
Seedlings of both KS8 and N32 sorghum [Sorghum bicolor (L.) Moench] were high in dhurrin [p-hydroxy-(S)-mandelonitrile-BD-glucoside] and thus in hydrocyanic acid potential (HCN-p), but the HCN-p of mature leaves from field-grown plants of KS8 was only about one-tenth as high as that of N32. A study of the inheritance of this large difference between KS8 and N32 revealed that a single major gene...
متن کاملThe biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, enco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 63 6 شماره
صفحات -
تاریخ انتشار 1979